Text Analytics Using Latent Semantic Analysis

John Martin
Small Bear Technologies, Inc.
<John.Martin@SmallBearTechnologies.com>

www.SmallBearTechnologies.com
Overview

- Text Analytics
- Need for automated methods
- What is LSA
- How LSA works
- Applications of LSA
- Misconceptions
- Conclusion - Q&A
What is Text Analytics?

A set of linguistic, statistical, and machine learning techniques that model and structure the information content of textual sources for business intelligence, exploratory data analysis, research, or investigation (Wikipedia)

Text Analytics \approx Text Mining
Text Analytics

- Derive meaning from (textual) data sources
- Structured data
 - Fixed format
 - Known attributes
- Unstructured data
 - Natural language
Unstructured Text

- News feeds
- Call center logs
- E-mail traffic
- Surveys
- Social network postings
- Publishing
- Observational data
Automated Methods Required

- Volume of information
- Speed of change/production
- Complexity
- Need impartial/consistent analysis
The Goal

Maintaining and increasing the value of information

• Collecting information is not the problem - gaining understanding is the issue

• Too much information is just as useless at too little information
Some Common Methods

- Lexical matching
- Statistical evaluation
- Vector space models
- Rule based systems
- Parts of speech analysis
The Problem

- Failure to capture meaning and provide insight
- Methods not universally applicable
 - Language or domain dependent
- Need for specialized prior knowledge of data
- Require human interaction
 - Tagging, Keyword identification, Categorizations
- Not practical for large data sets
The Cost

Too much information is just as useless at too little information

Failure to understand the information we have leads to:

• Lost opportunities
• Unsatisfied customers
• Inability to fulfill mission
• Financial repercussions
What is LSA?

Latent Semantic Analysis
Latent Semantic Indexing

• The distinction is really one of application, as the same mathematics and computation are employed for both.

• LSA may be considered to refer to a broad collection of application while LSI is more closely associated with information retrieval.
Latent Semantic Analysis

• Theory of meaning[8]
 • Creates a mapping of meaning acquired from the text itself

• Computational model
 • Can perform many of the cognitive tasks that humans do essentially as well as humans [7]
How LSA Works

- LSA processing constructs a mapping of meaning in a semantic space.
- The mapping gives the meaning of words and documents not vice versa.
Compositionality Constraint

• The meaning of a document is the sum of the meaning of its words
• The meaning of a word is defined by the documents in which it appears (and does not appear)
LSA Space Construction

• LSA models a document as a simple linear equation

• A collection of documents (corpus) is a large set of simultaneous equations
Processing a Corpus

• Divide text corpus into units (documents)
 • Typically paragraphs of text
• Raw matrix is constructed from units
 • One row for each word type
 • One column for each unit (document)
 • Cells contain the number of times a particular word appears in a particular document
• Weighting functions may be applied [5]
Sparse Matrix

- The weighted term by document matrix represents a large set of simultaneous equations
- The term by document matrix is sparse
 - Typically less than 1% of the values are nonzero [2]
Solving Simultaneous Equations

- The system of simultaneous equations is solved for the meaning of each word type and document
 - Sparse matrix Singular Value Decomposition
 - Lanczos algorithm is typically used
 - Only solve for a reduced number of dimensions
 - Produces vectors representing the meaning of each term and document
Singular Value Decomposition \[^{[10]}\]

- The rows of matrix \(U \) are the vectors for the word types.
- Columns of \(U \) are the eigenvectors defining the axes for word type space.

\[
A = U \Sigma V^T
\]
Singular Value Decomposition \([10]\)

- The rows of matrix \(V\) are the text unit (document) vectors
- Columns of \(V\) are eigenvectors defining the axes for document space

\[
A = U \Sigma V^T
\]
Dimensional Reduction

• Typically solve for 300 - 500 dimensions \[^{10}\]
• Dimensional reduction allows comparison of all terms and all documents with each other
• In the sparse matrix comparison was not possible
• Dimensions are orthogonal
Dimensional Reduction

- With enough variables, every object is different
- With too few variables, every object is the same

Consider a geographic map
Semantic Space

- Vectors represent the meaning of a document (or term)
- Items similar in meaning are near each other in the semantic space
Computational Issues

• Nontrivial computation
 • Large sparse symmetric eigenproblem

• Scalability concerns [11]
 • Size of document set
 • Speed of processing

• Accuracy issues
 • Finite arithmetic introduces significant error
Operations

- Retrieval
- Clustering
- Comparison
- Interpretation
- Completion
Applications of LSA

Library Illustration

- Retrieval
- Content analysis
- Evaluation of “fit” into an existing collection
- Comparison of multiple collections
- Indexing of multilingual collections
Applications of LSA

- Repairing/cleaning data
- Education
 - Grading
 - Summarizing
- Non-textual applications
 - Bio-informatics
 - Personality profiles/compatibility analysis
Misconceptions and Misunderstandings

- Driven by term co-occurrence
- Word order issues
- Data collection size
- Content and Meaning
Co-occurrence

- LSA starts with a kind of co-occurrence
- Appearing in the same document does not make words similar
- Similarity is determined by the effect of the word meaning on the system of equations
Word Order

• Word order effects almost entirely within single sentences

• Research indicates only around 10% of meaning is word order dependent (for English)

[“order syntax? Much. Ignoring word Missed by is how”][8]
Data Collection Size

Beware of small data collections

• Generally - Use at least 100,000 documents
Content

LSA builds its notion of meaning from the content of the data collection
The Problem Revisited

- Failure to capture meaning and provide insight
- Methods not universally applicable
- Need for specialized prior knowledge of data
- Require human interaction
- Not practical for large data sets
Conclusion

● LSA offers powerful capabilities for gaining insight and understanding the contents of a data collection

● LSA provides analysis techniques not available with other Text Analytic methods

● Small Bear Technologies provides the core technology, tools, and support for performing Latent Semantic Analysis
Suggested Reading

References

References (cont.)

